The novel coronavirus which firstly detected in December 2019 in Wuhan, China, has been known to cause neurological dysfunction either by directly or indirectly infecting the brain. The virus has been known to cause neurological dysfunction by directly infecting the brain or indirectly as a result of strong activation from systemic immunological reaction. Human brain cells express the angiotensin-converting enzyme 2 (ACE2) protein in its surface, a protein involved in blood pressure regulation and a receptor for the virus to enter and infect the cells. ACE2 is also found in the endothelial cells constructing the blood vessels. Infection of the endothelial cells allows the virus to transport from the respiratory system to blood and crosses the blood-brain barrier to the brain, in which the virus replicates and subsequently causing neurological dysfunction. ACE2 expression is mainly found in both neuron and glial cells of the brainstem and regions responsible for cardiovascular function regulation, ie. subfornix, paraventricular nuclei, solitary tract nuclei, and rostral ventrolateral medulla regions. We are reporting a case of meningoencephalitis due to co-infection of M. tuberculosis and SARS-CoV-2 in a hospital in Indonesia. A 26-year-old gentleman working as a courier in a Sars-Cov-2 red zone without adequate protection complained frequent headaches since a month to admission. M. tuberculosis was detected on very low level by GenXpert® and rapid test for SARS-CoV-2 was nonreactive. Repeated GenXpert® showed detected M. tuberculosis with undetected rifampicin resistance. Subsequent CSF SARS-CoV-2 PCR was positive although the oropharyngeal swab was negative. The report of pulmonary co-infection of TB and SARS-COV-2 has been published, however, to our best knowledge there has been no report of neurological co-infection to date. We are reporting the report of CNS co-infection from our country.

Keywords: COVID-19, Meningoencephalitis, Tuberculosis, SARS-CoV-2.
CASE REPORT

CT showed increased enhancement in basal cistern characteristic of tuberculous meningitis, accompanied by bilateral basal ganglia ischemia and mild hydrocephalus (Figure 2). The patient was diagnosed with M. tuberculosis meningitis with immediate start of anti-tuberculosis treatment, acute respiratory failure, septic shock, hyponatremia, and hepatitis B.

In day 6, his condition improved (GCS E₅ M₄ V₇, BP 110/70 mmHg, SpO₂ 99%, FiO₂ 60%, V-SIMS PS 10, PEEP 5, VT 400, RR 12 pm) with dobutamine (10 mcg/kgBW/min) and norepinephrine (0.1 mcg/kgBW/min) infusions. Sputum results were positive for acid-fast bacilli and GenXpert® MTB-RIF-Assay was indeterminate. In day 7, the blood pressure stabilized (110/70 mmHg with norepinephrine infusions), SpO₂ 99%, FiO₂ 50%, CPAP PEEP 5, PS 6, the patient was afebrile, the leukocyte (12,600/mm³) and sodium (135 mEq/L) levels were improved. Repeated GenXpert® showed detected M. tuberculosis with undetected rifampicin resistance. In Day 8, CSF SARS-CoV-2 PCR was positive, thus the diagnosis was tuberculous meningitis, confirmed COVID-19 encephalitis, and septic shock with improvement. In Day 9, we performed percutaneous dilated tracheostomy (PDT) and the day after the patient started 6 liters per minute oxygen (GCS E₃ M₄ V₉, SpO₂ 99%, FiO₂ 50%, V-SIMV PS 6 PEEP 5). In day 17 (3rd May 2020), patient was discharged for home care with GCS E₃ M₄ V₉, SpO₂ 99% with speaking valve.

Three days after discharge (6th May 2020) the patient was readmitted due to decreased consciousness, unresponsiveness, fever, and dyspnea. His GCS was E₂ M₂ V₂, BP 130/80 mmHg, pulse 154 bpm, RR 40 pm, temperature 38°C, SpO₂ 99% with speaking valve. He was admitted to the ICU and planned for an oropharyngeal swab. Blood gas analysis revealed respiratory alkalosis, complete blood count showed leukocytosis (20,360/mm³) with left shifting, increased neutrophil-lymphocyte ratio (17.11), and increased absolute neutrophil count (18,140). Quantitative CRP was elevated (13.63), coagulation tests were normal, HCV and HIV were negative. Chest X-Ray suggested right pleural effusion and active tuberculosis (Figure 1). In day 4 readmission, the patient showed improvement in consciousness and respiratory rate and was maintained with 15 liters per minute oxygen via speaking valve (GCS E₅ M₄ V₇, SpO₂ 99%, FiO₂ 100%, RR 24 pm, temperature 38°C, SpO₂ 99%). In day 8 readmission, oropharyngeal swab result was negative and the fever started to diminish. In day 11 readmission, he was discharged for the second time for home care with latest GCS E₃ M₄ V₇.

mEq/L, BE -4), leukocytosis (23,960/mm³), hyponatremia (120 mEq/L), mild increase of serum transaminases (AST 58.3 IU/L ALT 59.4 IU/L), reactive HbsAg, and low CD4 lymphocyte count (33/m³). M. tuberculosis was detected on very low level by GenXpert® and rapid test for SARS-CoV-2 was nonreactive. Lumbar puncture parameters matched tuberculosis infection [cloudy cerebrospinal fluid (CSF), leukocyte 113/µL, Polymorph nuclear cells (PMN) 13, Mononuclear (MN) cells 87, protein 100, glucose 27 (blood glucose 101 mg/dL), nonne positive, pandy negative]. Contrast head CT showed increased enhancement in basal cistern characteristic of tuberculous meningitis, accompanied by bilateral basal ganglia ischemia and mild hydrocephalus (Figure 2). The patient was diagnosed with M. tuberculosis meningitis with immediate start of anti-tuberculosis treatment, acute respiratory failure, septic shock, hyponatremia, and hepatitis B.

Figure 1. Chest X-Ray on first admission (Day 1) and readmission (Day 20).

Figure 2. Contrast Head CT showing basal meningeal enhancement (Day 5).
DISCUSSION

We are reporting the co-infection of M. tuberculosis and SARS-CoV-2 causing meningoencephalitis in our hospital in Indonesia, with TB remains a public health problem with the incidence rate 391 per 100,000 population. Central nervous system (CNS) tuberculosis is caused by the hematogenous dissemination of the bacilli into the brain, leading to small subependymal or subpial foci called ‘Rich foci’ which may be ruptured and lead to the spread of M. tuberculosis to subarachnoid space. The established risk factors of tuberculous meningitis are alcoholism, diabetes, malignancy, and corticosteroid treatment, while raised intracranial pressure, acute infarction, and hyponatremia are known complications. An optimal microbial diagnosis of M. tuberculosis remains challenging, with the 42.0% sensitivity of GenXpert® compared to 64.0% by PCR, thus relying on clinical and other supporting examinations is essential.

SARS-CoV-2 has been an emerging global problem and creating public health emergencies in many countries. Recent literatures have suggested that SARS-CoV-2 infection is able to invade the nervous system via blood circulation, neuronal transmission, and immune system from the respiratory system, although the evidence is still rare for the circulatory pathway. The presence of SARS-CoV-2 in the systemic circulation causes viral spike protein interaction with ACE2 which is expressed in the capillary endothelial, leading to endothelial destruction and viral introduction to the brain. In the neuronal level, interaction with ACE2 progresses to viral budding accompanied with non-inflammatory neuronal damage. Another possible migration pathway for SARS-CoV-2 to the brain is believed to be through the cribriform plate adjacent to the olfactory bulb. The release of secondary inflammatory reaction in blood may affect the blood-brain-barrier (BBB) permeability mediated by cytokines leading to viral infiltration and the subsequent viral encephalitis.

The SARS-CoV was detected in the brain from the olfactory tract leading to inflammatory and demyelination. Neural damage caused by viral infection may be mediated by systemic immunological system, as the severe infection is related to the development of systemic inflammatory response syndrome (SIRS). This may be initiated abnormally in severe pneumonia due to SARS-CoV-2 infection, where early anti-inflammatory agent intervention may significantly prevent and reduce the risk and severity of further neuronal damage. Moreover, both CoV and CoV-2 infection has been responsible in numerous death due to multi-organ failure induced by SIRS. Neurotropic viral infection like SARS-CoV may activate glial cells and induce pro-inflammatory state where the release of IL-6, an integral part of the cytokine storm which correlated positively with the severity of COVID-19 symptom.

Our case demonstrated the neuroinvasive potentials of SARS-CoV-2 infection, an unusual manifestation of COVID-19 similar to reports from Japan and China. The report regarding pulmonary co-infection of TB and SARS-CoV-2 has been published. However, we failed to find the report of CNS manifestation. Active or latent M. Tuberculosis infection was observed to possibly increase the susceptibility and severity of COVID-19 therefore M. Tuberculosis check-in SARS-CoV-2 positive patients was recommended. We observed an initial negative immunological result of SARS-CoV-2, however the result from lumbar puncture examination was positive of N-SAR-CoV-2. This showed the high level of SARS-CoV-2 nucleic acid in the CSF in this case and that the result was dependent of the viral concentration level in biologic fluids. However, the oropharyngeal swab test was negative, similar to Moriguchi et al., who detected SARS-CoV-2-RNA in CSF but not in the nasopharyngeal swab. Our experience showed that this should not become the reason for excluding SARS-CoV-2 infection diagnosis in suspected patients. We observed that immunocompromised patients with tuberculosis infection might also be infected with SARS-CoV-2, causing a horizontal infection. Encephalitic symptoms might be the first manifestations besides respiratory problems to screen undetected SARS-CoV-2 patients, and the health care providers need to be aware that SARS-CoV-2 infected patients may develop encephalopathy during admission. The diagnostic measurement for SARS-CoV-2 encephalitis best provided by the RT-PCR whenever possible, especially in countries with limited resources and facilities as such countries might be severely affected by the global pandemic, as this method requires more cost, highly-trained staffs, separated facilities with high biosafety levels, and rigorous quality control. Our report emphasized the nervous system’s involvement in the SARS-CoV-2 and highlighted the importance of diagnostic approach in SARS-CoV-2 related encephalitis in the developing country.

CONCLUSION

Co-infection between M. tuberculosis and SARS-CoV-2 is possible to invade the CNS and cause severe neurological manifestation. Although the exact mechanism of this phenomenon is still unknown, viral neurotropism as seen in SARS-CoV may be responsible. The physicians should be alert when managing patients displaying encephalitic symptoms if the patients possess high-risk factors of SARS-CoV-2 infection. It is also essential to check the M. Tuberculosis infection status in SARS-CoV-2 infected patients as it may increase the symptom severity.

FUNDING

This report doesn’t receive any specific grant from government or any private sectors.

ETHICAL CONSIDERATION

Patient had received signed written informed consent regarding publication of their medical data in journal article.

ACKNOWLEDGMENTS

All authors contributed equally in the writing of this report.

CONFLICT OF INTEREST

The author reports no conflicts of interest in this work.
AUTHOR CONTRIBUTION
All authors had contributed equally on manuscript preparation and agreed to final version of the manuscript for publication.

REFERENCES