Correlation of low vitamin D status with atopic dermatitis severity in children

Habibah Hasyim Lubis*, Kristo Alberto Nababan1, Deryne Anggia Paramita2

ABSTRACT

Introduction: Atopic dermatitis (AD) is a chronic relapsing inflammatory skin disorder. Vitamin D has some roles in immunologic mechanisms. Vitamin D may influence the severity of AD. Previous studies of vitamin D correlation in children with atopic dermatitis have revealed conflicting results. This study determines the correlation between low vitamin D status with the severity of atopic dermatitis in children.

Methods: This is a cross-sectional analytical study with a cross-sectional approach that involved DA subjects aged ≤17 years with low vitamin D status. The recording of basics data and examination of subjects included assessing the scoring atopic dermatitis (SCORAD) score and measuring 25-hydroxyvitamin D (25(OH)D) level for all subjects. Statistical analyses were performed using Pearson's correlation coefficients, with P<0.05 was considered statistically significant.

Result: A total of 30 subjects with AD with the most extensive distribution was in the age group of 11–17 years (53.33%), sex proportions were equal both male (50%) and female (50%), all subjects have an atopic family history (100%). The mean vitamin D level was 18.02 ± 4.56 ng/ ml (deficiency), and the mean SCORAD score was 20.03 ± 5.80 (mild). There was a significantly strong negative correlation between low serum vitamin D level and severity of AD in children (r = -0.666, p = 0.001).

Conclusion: Lower vitamin D status is inversely associated with the severity of AD in children.

Keywords: atopic dermatitis, SCORAD, vitamin D, 25-hydroxy-vitamin D

INTRODUCTION

Atopic dermatitis (AD) is a chronic inflammatory skin disease primarily beginning in childhood with a variable natural course. The itch hallmark symptom of the disease, often unrelenting in severe cases, leading to sleep disturbance and excoriated infection-prone skin. In the International Study of Asthma and Allergies in Childhood (ISAAC), the prevalence of AD in children varies significantly from 0.3% to 20.5% among 56 countries. However, there are consistent trends of increasing disease prevalence over time. Atopic dermatitis has a complex etiology, whereby genetic and immune mechanisms act in concert with environmental factors to influence manifestations of the disease. Vitamin D is a secosteroid, which was initially known for its skeletal role. However, in recent years, its functions in different organs have been increasingly recognized. Also, vitamin D functions in skin physiology, focusing on its role in certain inflammatory skin conditions such as psoriasis and atopic dermatitis.

A study by Umar et al. in Qatar reported that vitamin D has various functions on the skin, including a role in the keratinocyte proliferation process, differentiation, apoptosis, skin barrier function, and immune system regulation. Vitamin D has been considered the therapy of choice for various skin diseases, including psoriasis and cutaneous lupus erythematosus. The results of studies investigating vitamin D levels in patients with AD are contradictory.

The effect of vitamin D levels on disease resistance has not been thoroughly evaluated in children with AD. Effective therapy to control complaints in AD patients is still a challenge. Research is needed to assess the correlation between low vitamin D status and severity in AD patients hence support the finding of adjuvant therapy in the form of vitamin D supplements that can provide better clinical cures with fewer side effects.

METHODS

Sample Selection
This cross-sectional study was conducted from December 2019 to October 2020...
in the Polyclinic of the Immuno-dermatology Division in Dermatology and Venereology Department of H. Adam Malik General Hospital Medan and Polyclinic Dermatology and Venereology of the Universitas Sumatera Utara Hospital Medan. Including 30 cases of children with atopic dermatitis and low vitamin D status. Samples obtained through basic data recording and examination included diagnosis using the Hanifin Rajka criteria, assessing AD severity with SCORAD index, and measuring 25-hydroxyvitamin D serum levels using a DiaSorin Liaison® analyzer with Chemiluminescence Immunoassay (CLIA) method.

The inclusion criteria were children aged ≤17 years old with AD and low vitamin D status who willing to participate and signing informed consent. Detailed clinical data obtained were patient’s data recording consisting of age, sex, familial atopic history, SCORAD score, and serum vitamin D levels.

Low vitamin D status
Twenty-five-hydroxyvitamin D is the active form of vitamin D in the body, often used to measure serum vitamin D levels in a person. Based on Hollick in 2011 the reference values for 25(OH)D were reported as: deficiency <20 ng/ml, insufficiency 20-29 ng/ml, normal 30-100 ng/ml, toxic> 100 ng/ml.

SCORAD
The SCORAD index was developed by the European Task Force Atopic Dermatitis (ETFAD) in 1993. SCORAD index consists of the interpretation of the level of disturbance (A: according to the rule of nine - 20% of the score), the intensity consists of 6 items (B: erythema, edema/papules, scratching effect, scaling, lichenification, and dryness - 60% of the score; each item has four scores: 0, 1, 2, 3) and subjective symptoms (C: itching, difficulty sleeping - 20% of the score). 4 In the SCORAD Index, a visual analog scale is used for the evaluation of subjective symptoms. The score distribution is achieved using the formula A / 5 + 7B / 2 + C. The maximum score is achieved when it is 103. The evaluation filled in 7-10 minutes depends on the approaching experience.

Ethical Approval
The protocol has approval by The Health Ethical Committee, University of Sumatera Utara, Medan, Indonesia (No: 223/TGL/KEPK FK USU-RSUP HAM/2020).

Statistical Analysis
Statistical analysis was performed using Pearson’s or Spearman’s correlation coefficients to assess significant correlations when the data had a normal or not normal distribution. The p-values ≤ 0.05 were considered statistically significant.

RESULTS

Patient’s characteristics
Subjects were 30 children suffering from atopic dermatitis with low vitamin D status with an age range of 1-17. The mean age was 9.96 ± 4.23 years by the most age range at 11-17 years of 16 subjects (53.3%). Gender characteristics have the same proportion of men and women as 15 subjects (50%) and women as 15 subjects (50%). Familial history of atopy obtained in all study subjects, namely 30 subjects (100%). Characteristics of the research subject seen in Table 1.

Characteristics of vitamin D levels and the severity of atopic dermatitis
The overall mean value of vitamin D levels in the study subjects was 18.02 ± 4.56 ng/ml hence classified as a deficiency. Deficiency levels of vitamin D were in 20 subjects (66.7%) with a mean value of 15.51 ± 3.01 ng/ml while insufficiency was in 10 subjects (33.3%) with the mean value of 23.06 ± 2.41 ng/ml. The mean value of SCORAD was 20.03 ± 5.80, where 26 subjects (86.7%) classified as mild and 4 (13.3%) classified as moderate. Characteristics of vitamin D serum levels and the severity of atopic dermatitis seen in Table 2. Data presented in the form of mean and standard deviation (normally distributed data).

Correlation between low vitamin D status and severity in atopic dermatitis
Based on the Pearson correlation test, there was a significant correlation between vitamin D levels and the severity of AD based on SCORAD with a negative correlation direction and a strong correlation (p <0.001; r = -0.666). In other words, if the serum vitamin D level

Table 1. Description of the Characteristics Research Subjects

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Category</th>
<th>n (30)</th>
<th>Percentage (%)</th>
<th>Mean ± SD*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y.o)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 – 5</td>
<td>5</td>
<td>16.66</td>
<td>9.96±4,23*</td>
<td></td>
</tr>
<tr>
<td>6-10</td>
<td>9</td>
<td>30.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-17</td>
<td>16</td>
<td>53.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>15</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>15</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family history</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>30</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: SD: Standard of deviation; data presented in the form of mean and standard deviation (normally distributed data).

Table 2. Characteristics of vitamin D levels and the degree of severity of atopic dermatitis

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Category</th>
<th>n (30)</th>
<th>Percentage (%)</th>
<th>Mean ± SD*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin D</td>
<td>Deficiency</td>
<td>20</td>
<td>66.7</td>
<td>18.02±4,56* ng/ mL</td>
</tr>
<tr>
<td></td>
<td>Insufficiency</td>
<td>10</td>
<td>33.3</td>
<td></td>
</tr>
<tr>
<td>SCORAD</td>
<td>Mild</td>
<td>26</td>
<td>86.7</td>
<td>20.03±5,80* ng/ mL</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>4</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Severe</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
decreases, the atopic dermatitis severity will increase, and vice versa.

DISCUSSION

Atopic dermatitis is a chronic and itchy residual inflammatory skin disease that generally affects children, and to a lesser extent, it can affect adults. DA is a complex condition involving interactions between various gene products requiring environmental factors and immune response, leading to a late clinical phenotype with the varying initial course.

This present study reported a total of children suffering from atopic dermatitis with low vitamin D status with an age range of 1-17. The mean age was 9.96 ± 4.23 years by the most age range at 11-17 years of 16 subjects (53.3%). In line with Wang et al., who reported that the mean age of children with AD was 9.5 ± 4.27 with the most age range at the age of 1-16.

Meanwhile, a study conducted by Akan et al. reported a mean age of 2 years with the most age range of 5 months–17 years.

The diagnosis of AD is continually increasing by 10% to 20% incidences among the pediatric population. This condition essentially develops at an early age (45%) in children; infrequently, the symptoms begin to appear under the first six months. In 60% of patients, symptoms appear before the first year, and in 30% of children, new symptoms appear before the age of 5. Whereas 10% of AD diagnosed in the population aged 6 to 20 years. 12,13

The results of previous studies of ISAAC in 56 countries observed female preponderance for AD, with an overall female-to-male ratio of 1.3 to 1.0. However, in the research of Halim et al., in Jakarta, there was no difference in the proportion of boys and girls in AD in the case group. In this study, the proportion of sexes is balanced based on the distribution of available data.

A familial history of atopy was obtained in all study subjects, namely 30 subjects. The results of this study supported by previous studies, in which the increased risk of AD in infants born to parents with a history of atopy originating from the mother was predictive (93 people, 23%) than a history of paternal atopy (53 people, 17%). AD is an inherited familial disease with a strong maternal influence. A history of atopy in first-degree relatives is one of the diagnostic criteria for atopic dermatitis in infancy.14 The highest risk was babies born to mothers with a history of eczema. In line with Budiastuti’s study, AD children with a maternal history were 42 (52.3%) and 42 (47.7%) paternal history.15

This study found that the overall average value of vitamin D levels in the study subjects was classified as a deficiency. In line with the research conducted by Baek et al. and D’Auria et al., which found that the majority of AD patients had vitamin D deficiency with mean levels of 18.3 ng/dl and 19.4 ng/ dl. Slightly different results were found in the study conducted by Farajzadeh et al., where the mean value of vitamin D levels in AD patients was 24.62 ng/dl, also below normal levels but in the category of insufficiency. While Galli et al. obtained the average value of vitamin D levels classified normal in AD patients was 48.5 ng/dl.

Twenty-five-hydroxyvitamin D is the active form of vitamin D in the body, used to measure serum vitamin D levels in a person. Vitamin D produced in the skin or obtained with food is biologically inactive and requires two subsequent hydroxylations to obtain full hormonal activity.20 Apart from sun exposure, several studies suggest dietary vitamin D intake is related to serum vitamin D levels. Serum vitamin D levels do not correlate with total calorie intake, but the diet composition is more important for improving vitamin D status in infants. The main source of vitamin D in infancy is vitamin D dietary supplements. In infants and children, low levels of vitamin D may be because the baby spends more indoors, and parents tend to keep children away from exposure to direct sunlight, resulting in low production of vitamin D in the skin.20-22

In this study, the average SCORAD value was classified as mild. This result was following the research conducted by Kim et al. and Galli et al., wherefrom these two studies, the mean SCORAD value of AD patients were classified as mild (17.5). This result was different from the results of the research of Baek et al. and Chiu et al.

In this study, it was found there was a significant and strong negative correlation between vitamin D levels and the severity of AD based on SCORAD. The result was in line with the results of previous, who also reported an inverse relationship between vitamin D levels and AD severity.24-29

The pathogenesis of AD is not fully understood. However, it results from a complex interaction between impaired skin barrier function, abnormalities of the immune system and the environment and infectious agents, decreased levels of ceramide, increased activity of endogenous proteolytic enzymes, and increased transepidermal water loss.21 Vitamin D is a hormone with various physiological actions and influences the regulation of the immune system. Vitamin D deficiency is considered a significant risk factor for food allergies, and increased vitamin D intake in pregnant women reduces allergic sensitization in offspring.22

Vitamin D is produced endogenously in the skin. It showed that keratinocytes produce abundant amounts of 1α, 25 (OH) 2D3 of 25-OH D3 under exogenous regulation of 1α, 25 (OH) 2D3. The production of biologically active vitamin D3 varies with the degree of differentiation of keratinocytes. Moreover, because keratinocytes express vitamin D receptors (VDR), they can respond to the fully active form of vitamin D3 - 1α, 25 (OH) 2D3. Together with calcium is one of the best regulators of epidermal differentiation. One point two five dihydroxy vitamin D3 increases the expression of involucrin, transglutaminase, loricrin, and filaggrin. They increase the potential for calcium-induced differentiation of keratinocytes at the level of gene expression and mRNA stability. It also enhances the formation of a cornified envelope. Filaggrin will be degraded into NMF, which is essential for maintaining skin moisture content, low pH, or maintaining the barrier function of the stratum corneum.30-32

Although the immunological effects of vitamin D still require further research, vitamin D is known to modulate phenotypes and induce tolerogenic function of dendritic cells. Besides, vitamin D decreases the expression of
REFERENCES

