Skip to main content Skip to main navigation menu Skip to site footer

Effect of epigallocatechin gallate (EGCG) on neutrophils count and interleukin-6 (IL-6) expression in Pseudomonas aeruginosa keratitis: an experimental study on Rattus norvegicus rat

  • Annisa Karima ,
  • Luki Indriaswati ,
  • Susy Fatmariyanti ,
  • Nila Kurniasari ,


Link of Video Abstract:

Pseudomonas aeruginosa keratitis is a prevalent ocular illness that carries the potential risk of endophthalmitis and corneal perforation. The use of antibiotics effectively eradicates the bacteria; nevertheless, the corneal damage caused by toxins remains unresolved, resulting in the thinning of the cornea, which can ultimately lead to corneal perforation or the development of corneal fibrosis. This study aims to analyze the quantification of neutrophils and the expression levels of interleukin-6 in the Pseudomonas aeruginosa keratitis model.

Methods: The study used an experimental research design. The research utilized a Rattus norvegicus corneal preparation to establish a keratitis model. Each test group consisted of six samples, including a negative control (solvent), moxifloxacin 0.5%, and a combination of moxifloxacin 0.5% and EGCG at a concentration of 50 µg/mL.

Results: The combined group of 0.5% moxifloxacin and epigallocatechin gallate (EGCG) 50 µg/mL exhibited a reduced count of neutrophils compared to the group treated with 0.5% moxifloxacin alone. The findings indicated a statistically significant disparity in the neutrophil count across the various treatment groups (p<0.05). No significant distinction was observed in the neutrophil count between the moxifloxacin 0.5% group and the combination group (p>0.05). The average percentage of IL-6 expression level in the group treated with a combination of 0.5% moxifloxacin and 50 µg/mL EGCG was found to be lower compared to the group treated with only 0.5% moxifloxacin. There was statistically significant variation in the expression of IL-6 across the three treatment groups (p<0.05). There was no statistically significant difference in the level of IL-6 expression between the moxifloxacin 0.5% group and the combination group (p>0.05).

Conclusion: The results of this investigation demonstrated that EGCG possesses the capability to serve as an adjunct treatment for the suppression of inflammation in cases of Pseudomonas aeruginosa keratitis.


  1. Qin S, Xiao W, Zhou C, et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther. 2022;7(1):199.
  2. Chadha J, Harjai K, Chhibber S. Repurposing phytochemicals as anti-virulent agents to attenuate quorum sensing-regulated virulence factors and biofilm formation in Pseudomonas aeruginosa. Microb Biotechnol. 2022;15(6):1695-1718.
  3. Huang HY, Wang MC, Chen ZY, et al. Gelatin-epigallocatechin gallate nanoparticles with hyaluronic acid decoration as eye drops can treat rabbit dry-eye syndrome effectively via inflammatory relief. Int J Nanomedicine. 2018;13:7251-7273.
  4. Jeon J, Kim JH, Lee CK, Oh CH, Song HJ. The Antimicrobial Activity of (-)-Epigallocatehin-3-Gallate and Green Tea Extracts against Pseudomonas aeruginosa and Escherichia coli Isolated from Skin Wounds. Ann Dermatol. 2014;26(5):564-569.
  5. Lin M, Sun X, Ye S, et al. A new antioxidant made from a pterostilbene functionalized graphene nanocomposite as an efficient treatment for dry eye disease. Front Chem. 2022;10:942578.
  6. Li L, Jin R, Li Y, et al. Effects of Eurya japonicaextracts on human corneal epithelial cells and experimental dry eye. Exp Ther Med. 2020;20(2):1607-1615.
  7. Morin CD, Déziel E, Gauthier J, Levesque RC, Lau GW. An Organ System-Based Synopsis of Pseudomonas aeruginosa Virulence. Virulence. 2021;12(1):1469-1507.
  8. Ung L, Chodosh J. Foundational concepts in the biology of bacterial keratitis. Exp Eye Res. 2021;209:108647.
  9. Singh RB, Naderi A, Cho W, et al. Modulating the tachykinin: Role of substance P and neurokinin receptor expression in ocular surface disorders. Ocul Surf. 2022;25:142-153.
  10. Malhotra S, Hayes D Jr, Wozniak DJ. Cystic Fibrosis and Pseudomonas aeruginosa: the Host-Microbe Interface. Clin Microbiol Rev. 2019;32(3):e00138-18.
  11. Osei Duah Junior I, Tchiakpe MP, Borquaye LS, et al. Clinical characteristics of external bacterial ocular and periocular infections and their antimicrobial treatment patterns among a Ghanaian ophthalmic population. Sci Rep. 2022;12(1):10264.
  12. Herbert R, Caddick M, Somerville T, et al. Potential new fluoroquinolone treatments for suspected bacterial keratitis. BMJ Open Ophthalmol. 2022;7(1):e001002
  13. Du A, Zheng R, Disoma C, et al. Epigallocatechin-3-gallate, an active ingredient of Traditional Chinese Medicines, inhibits the 3CLpro activity of SARS-CoV-2. Int J Biol Macromol. 2021;176:1-12.
  14. Tomlin H, Piccinini AM. A complex interplay between the extracellular matrix and the innate immune response to microbial pathogens. Immunology. 2018;155(2):186-201.
  15. Zhao Y, Si Y, Mei L, et al. Effects of sodium houttuyfonate on transcriptome of Pseudomonas aeruginosa. BMC Res Notes. 2019;12(1):685.
  16. Aduba DC, Yang H. Polysaccharide Fabrication Platforms and Biocompatibility Assessment as Candidate Wound Dressing Materials. Bioengineering (Basel). 2017;4(1):1.
  17. Fleiszig SMJ, Kroken AR, Nieto V, et al. Contact lens-related corneal infection: Intrinsic resistance and its compromise. Prog Retin Eye Res. 2020;76:100804.
  18. Zhong W, Yin H, Xie L. Expression and potential role of major inflammatory cytokines in experimental keratomycosis. Mol Vis. 2009;15:1303-1311.
  19. Sun Y, Karmakar M, Roy S, et al. TLR4 and TLR5 on corneal macrophages regulate Pseudomonas aeruginosa keratitis by signaling through MyD88-dependent and -independent pathways. J Immunol. 2010;185(7):4272-4283.
  20. Metruccio MME, Tam C, Evans DJ, Xie AL, Stern ME, Fleiszig SMJ. Contributions of MyD88-dependent receptors and CD11c-positive cells to corneal epithelial barrier function against Pseudomonas aeruginosa. Sci Rep. 2017;7(1):13829.
  21. Lin T, Quellier D, Lamb J, et al. Pseudomonas aeruginosa-induced nociceptor activation increases susceptibility to infection. PLoS Pathog. 2021;17(5):e1009557.
  22. Paškevičius Š, Dapkutė V, Misiūnas A, et al. Chimeric bacteriocin S5-PmnH engineered by domain swapping efficiently controls Pseudomonas aeruginosa infection in murine keratitis and lung models. Sci Rep. 2022;12(1):5865.
  23. Zhang Y, Do KK, Wang F, et al. Zeb1 facilitates corneal epithelial wound healing by maintaining corneal epithelial cell viability and mobility. Commun Biol. 2023;6(1):434.
  24. Houwink EJ, van Teeffelen SR, Muijtjens AM, et al. Sustained effects of online genetics education: a randomized controlled trial on oncogenetics. Eur J Hum Genet. 2014;22(3):310-316.
  25. Nishida T, Sugioka K, Fukuda K, Murakami J. Pivotal Role of Corneal Fibroblasts in Progression to Corneal Ulcer in Bacterial Keratitis. Int J Mol Sci. 2021;22(16):8979.
  26. Ljubimov AV, Saghizadeh M. Progress in corneal wound healing. Prog Retin Eye Res. 2015;49:17-45.
  27. O'Callaghan R, Caballero A, Tang A, Bierdeman M. Pseudomonas aeruginosa Keratitis: Protease IV and PASP as Corneal Virulence Mediators. Microorganisms. 2019;7(9):281
  28. Singh RB, Batta P. Herpes simplex virus keratitis mimicking Acanthamoeba keratitis: a clinicopathological correlation. BMJ Case Rep. 2018;2018:bcr2018226100.
  29. Dini LA, Cockinos C, Frean JA, Niszl IA, Markus MB. Unusual case of Acanthamoeba polyphaga and Pseudomonas aeruginosa keratitis in a contact lens wearer from Gauteng, South Africa. J Clin Microbiol. 2000;38(2):826-829.
  30. Hoffman JJ, Yadav R, Das Sanyam S, et al. Topical chlorhexidine 0.2% versus topical natamycin 5% for fungal keratitis in Nepal: rationale and design of a randomised controlled non-inferiority trial. BMJ Open. 2020;10(9):e038066.
  31. Gao N, Kumar A, Jyot J, Yu FS. Flagellin-induced corneal antimicrobial peptide production and wound repair involve a novel NF-kappaB-independent and EGFR-dependent pathway. PLoS One. 2010;5(2):e9351.
  32. Chen G, Zhang J, Zhang H, et al. Anti-inflammatory effect of emodin on lipopolysaccharide-induced keratitis in Wistar rats. Int J Clin Exp Med. 2015;8(8):12382-12389.
  33. Iribarne M, Hyde DR. Different inflammation responses modulate Müller glia proliferation in the acute or chronically damaged zebrafish retina. Front Cell Dev Biol. 2022;10:892271
  34. Zwolak I. Epigallocatechin Gallate for Management of Heavy Metal-Induced Oxidative Stress: Mechanisms of Action, Efficacy, and Concerns. Int J Mol Sci. 2021;22(8):4027.
  35. Wedari NLPH, Sukrama IDM, Budayanti NNS, Sindhughosa DA, Prabawa IPY, Manuaba IBAP. One Health concept and role of animal reservoir in avian influenza: a literature review. Bali Medical Journal 2021;10(2): 515-520.
  36. Ung L, Bispo PJM, Shanbhag SS, Gilmore MS, Chodosh J. The persistent dilemma of microbial keratitis: Global burden, diagnosis, and antimicrobial resistance. Surv Ophthalmol. 2019;64(3):255-271.
  37. Tuon FF, Dantas LR, Suss PH, Tasca Ribeiro VS. Pathogenesis of the Pseudomonas aeruginosaBiofilm: A Review. Pathogens. 2022;11(3):300.
  38. Konstantopoulos A, Cendra MDM, Tsatsos M, Elabiary M, Christodoulides M, Hossain P. Morphological and cytokine profiles as key parameters to distinguish between Gram-negative and Gram-positive bacterial keratitis. Sci Rep. 2020;10(1):20092.
  39. Zhang Y, Liang Q, Liu Y, et al. Expression of cytokines in aqueous humor from fungal keratitis patients. BMC Ophthalmol. 2018;18(1):105.
  40. Yamaguchi T, Calvacanti BM, Cruzat A, et al. Correlation between human tear cytokine levels and cellular corneal changes in patients with bacterial keratitis by in vivo confocal microscopy. Invest Ophthalmol Vis Sci. 2014;55(11):7457-7466.
  41. Yang G, Zhou D, Wan R, et al. HPLC and high-throughput sequencing revealed higher tea-leaves quality, soil fertility and microbial community diversity in ancient tea plantations: compared with modern tea plantations. BMC Plant Biol. 2022;22(1):239.
  42. Rayungsista A, Suhendro G, Fauziah D, Notobroto HB, Zuhria I. Expression of Matrix Metalloproteinase-8 (MMP-8) and Tissue Inhibitors of Metalloproteinase-1 (TIMP-1) after cryotherapy in Aspergillus flavus keratitis at Dr. Soetomo General Academic Hospital, Surabaya, Indonesia. Bali Medical Journal. 2022;11(2):747-751.
  43. Urolita TY, Fathimah FSN, Karima, A., Nurwasis., Zuhria, I. 2023. Epigallocatechin gallate effect on Interleukin-1β and MMP-9 expression as Pseudomonas aeruginosa keratitis adjuvant therapy. Bali Medical Journal 12(2): 1691-1695.

How to Cite

Karima, A. ., Indriaswati, L. ., Fatmariyanti, S. ., & Kurniasari, N. . (2023). Effect of epigallocatechin gallate (EGCG) on neutrophils count and interleukin-6 (IL-6) expression in Pseudomonas aeruginosa keratitis: an experimental study on Rattus norvegicus rat. Bali Medical Journal, 12(3), 2646–2655.




Search Panel