Skip to main content Skip to main navigation menu Skip to site footer

Remodeling in early myocardial infarction: alteration of extracellular matrix; Collagen-1, Collagen-3, α-SMA, and α-Actinin in Porcine heart model

  • Muhammad Arza Putra ,
  • Idrus Alwi ,
  • Tri Wisesa Soetisna ,
  • Gunanti ,
  • Normalina Sandora ,
  • Pribadi Wiranda Busro ,
  • Supomo ,
  • Nur Amalina Fitria ,
  • Tyas Rahmah Kusuma ,

Abstract

Link of Video Abstract: https://youtu.be/lThOW40upEc

 

Background: Myocardial infarction (MI) leads to remodeling due to altered cardiac structure and function. The study of MI histopathology in humans or large animals mimicking the human heart is limited. Using the porcine heart model, our study investigated the composition of myocardial extracellular matrix (ECM) in collagen-1, collagen-3, α-smooth muscle actin (α-SMA), and α-actinin before and after myocardial infarction.

Methods: This study used two groups of domestic pigs: the Infarct group (n=4) and the Sham group (n=4). MI was induced by permanent ligation of the proximal branch of the posterior left ventricular artery. Cardiac enzymes, electrocardiography, and echocardiography data were collected before and after ligation. Cardiac tissue was harvested from the infarcted area after 60 minutes of ligation and stained with hematoxylin-eosin and Movat's Pentachrome. Collagen-1, collagen-3, and α-SMA were identified with immunohistochemical labeling, and the labeled area was measured using ImageJ. Meanwhile, α-actinin was visualized using immunofluorescence.

Results: Expression of collagen-1, collagen-3, and α-SMA in the infarct group were significantly decreased after 60 minutes of infarction compared with those in the sham group (p<0.01). The α-actinin was fragmented and diminished in the infarct group. 

Conclusion: Myocardial remodeling was detected 60 minutes after infarction with mild alteration in myocardial histoarchitecture and significant deterioration of ECM composition of collagen-1, collagen-3, α-SMA, and fragmented α-actinin fibers in the porcine heart model.

References

  1. Supriami Kelvin PI, Samti MD, Budi HA. Increased Platelet-derived Microparticles Counts is Correlated with Elevated Blood LDL Cholesterol in Acute Myocardial Infarction. 2022;14(3):226-328.
  2. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation. 2017;135(10):e146-e603.
  3. Usman Y, Iriawan RW, Rosita T, Lusiana M, Kosen S, Kelly M, et al. Indonesia’s Sample Registration System in 2018: A Work in Progress. Journal of Population and Social Studies. 2018;27(1):39-52.
  4. Zhao W, Zhao J, Rong J. Pharmacological Modulation of Cardiac Remodeling after Myocardial Infarction. Oxid Med Cell Longev. 2020;2020(1):8815349.
  5. Choudhury T, West NE, El-Omar M. ST elevation myocardial infarction. Clinical Medicine. 2016;16(3):277-282.
  6. Azevedo PS, Polegato BF, Minicucci MF, Paiva SA, Zornoff LA. Cardiac Remodeling: Concepts, Clinical Impact, Pathophysiological Mechanisms and Pharmacologic Treatment. Arq Bras Cardiol. 2016;106(1):62-69.
  7. Anna Meiliana AW. Resolution to Inflammation: Its Role in Reducing Fibrosis and Tissue Repair. 2023;15(2):106-193.
  8. Singh D, Rai V, Agrawal DK. Regulation of Collagen I and Collagen III in Tissue Injury and Regeneration. Cardiol Cardiovasc Med. 2023;7(1):5-16.
  9. Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D'Antoni ML, Debuque R, et al. Revisiting Cardiac Cellular Composition. Circ Res. 2016;118(3):400-409.
  10. Rog-Zielinska EA, Norris RA, Kohl P, Markwald R. The Living Scar--Cardiac Fibroblasts and the Injured Heart. Trends Mol Med. 2016;22(2):99-114.
  11. Andre C, Daniel JS, Emaddin K, Mark R, Richard JJ, Catherine AM, et al. Human-Induced Pluripotent Stem Cell-Derived Cardiomyocyte Encapsulating Bioactive Hydrogels Improve Rat Heart Function Post Myocardial Infarction. Stem Cell Reports. 2017;9(5):1415-1422.
  12. Cherng S, Young J, Ma H. Alpha-smooth muscle actin (α-SMA). J Am Sci. 2008;4(4):7-9.
  13. Arti VS, Claudio H, Nikolaos GF. The role of α-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2017;1863(1):298-309.
  14. Hetzler PT, Dash BC, Guo S, Hsia HC. Targeting Fibrotic Signaling: A Review of Current Literature and Identification of Future Therapeutic Targets to Improve Wound Healing. Ann Plast Surg. 2019;83(6):e92-e95.
  15. Taylor KA, Taylor DW, Schachat F. Isoforms of α-Actinin from Cardiac, Smooth, and Skeletal Muscle Form Polar Arrays of Actin Filaments. Journal of Cell Biology. 2000;149(3):635-646.
  16. Ghafoor M, Kamal M, Nadeem U, Husain AN. Educational Case: Myocardial Infarction: Histopathology and Timing of Changes. Acad Pathol. 2020;7(1):2374289520976639.
  17. Valentin J, Frobert A, Ajalbert G, Cook S, Giraud MN. Histological Quantification of Chronic Myocardial Infarct in Rats. J Vis Exp. 2016;118(1):e54914.
  18. Antman EM, Anbe DT, Armstrong PW, Bates ER, Green LA, Hand M, et al. ACC/AHA Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction—Executive Summary. Circulation. 2004;110(5):588-636.
  19. Sharma S, Jackson PG, Makan J. Cardiac troponins. J Clin Pathol. 2004;57(10):1025-1026.
  20. Collinson PO, Boa FG, Gaze DC. Measurement of cardiac troponins. Annals of clinical biochemistry. 2001;38(5):423-449.
  21. McPherson RA, Pincus MR. Henry's Clinical Diagnosis and Management by Laboratory Methods E-Book: Elsevier Health Sciences; 2011.
  22. Bouchardy B, Majno G. Histopathology of early myocardial infarcts: a new approach. The American Journal of Pathology. 1974;74(2):301.
  23. Frangogiannis NG. Pathophysiology of Myocardial Infarction. Compr Physiol. 2015;5(4):1841-1875.
  24. Doni F. Intervensi Koroner Perkutan Primer. Indonesian Journal of Cardiology. 2010;31(2):6.
  25. Frangogiannis NG, Michael LH, Entman ML. Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb). Cardiovasc Res. 2000;48(1):89-100.
  26. Shinde AV, Humeres C, Frangogiannis NG. The role of α-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2017;1863(1):298-309.
  27. Morales C, González GE, Rodrı́guez M, Bertolasi CA, Gelpi RJ. Histopathologic time course of myocardial infarct in rabbit hearts. Cardiovascular Pathology. 2002;11(6):339-345.
  28. Yu Y, Yin G, Bao S, Guo Z. Kinetic alterations of collagen and elastic fibers and their association with cardiac function in acute myocardial infarction. Mol Med Rep. 2018;17(3):3519-3526.
  29. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell Biology of Ischemia/Reperfusion Injury. International Review of Cell and Molecular Biology Volume 298. International Review of Cell and Molecular Biology. 2012;298(1):229-317.
  30. Ma Y, Iyer RP, Jung M, Czubryt MP, Lindsey ML. Cardiac Fibroblast Activation Post-Myocardial Infarction: Current Knowledge Gaps. Trends Pharmacol Sci. 2017;38(5):448-458.
  31. Humeres C, Frangogiannis NG. Fibroblasts in the Infarcted, Remodeling, and Failing Heart. JACC Basic Transl Sci. 2019;4(3):449-467.
  32. Briceno N, Schuster A, Lumley M, Perera D. Ischaemic cardiomyopathy: pathophysiology, assessment and the role of revascularization. Heart. 2016;102(5):397-406.
  33. Epelman S, Liu PP, Mann DL. Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat Rev Immunol. 2015;15(2):117-129.
  34. Ding S, Zhang X, Qiu H, Wo J, Zhang F, Na J. Non-cardiomyocytes in the heart in embryo development, health, and disease, a single-cell perspective. Frontiers in Cell and Developmental Biology. 2022;10(1):873264
  35. Bird SD, Doevendans PA, van Rooijen MA, Brutel de la Riviere A, Hassink RJ, Passier R, et al. The human adult cardiomyocyte phenotype. Cardiovascular Research. 2003;58(2):423-434.
  36. Kelloniemi A, Szabo Z, Serpi R, Napankangas J, Ohukainen P, Tenhunen O, et al. The Early-Onset Myocardial Infarction Associated PHACTR1 Gene Regulates Skeletal and Cardiac Alpha-Actin Gene Expression. PLoS One. 2015;10(6):e0130502.
  37. Hinz B, Coletta G, Tomasek JJ, Gabbiani G, Chaponnier C. Alpha-Smooth Muscle Actin Expression Upregulates Fibroblast Contractile Activity. Molecular Biology of the Cell. 2001;12(9):2730-2741.
  38. Takeda N, Manabe I, Uchino Y, Eguchi K, Matsumoto S, Nishimura S, et al. Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Invest. 2010;120(1):254-265.
  39. Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation. 2013;128(4):388-400.
  40. Rios-Navarro C, Ortega M, Marcos-Garces V, Gavara J, de Dios E, Perez-Sole N, et al. Interstitial changes after reperfused myocardial infarction in swine: morphometric and genetic analysis. BMC Vet Res. 2020;16(1):262.
  41. Tianing NW, Dwi PBAP, Wihandani DM. C-1562T polymorphism of matrix metalloproteinase-9 (MMP-9) gene associated with an elevated level of plasma MMP-9 concentration in a patient with acute myocardial infarction (AMI) in Denpasar-Bali. Bali Medical Journal. 2017;6(3):601–605.
  42. Handoyo V, Pertiwi GAR, Prabawa IPY, Manuaba IBAP, Bhargah A, Budiana IPG. Management of ST-elevation myocardial infarction in the setting of anterior epistaxis: focused on antiplatelet and antithrombotic therapies. International Medical Case Reports Journal. 2019;1(1):33-38.
  43. Tedjamulia V, Wibhuti IBR, Iswari IS, Nadha KB. Evaluating Low Values of Early Diastolic Velocity (e’) as a Predictor of Major Cardiovascular Events in Patients with Acute Myocardial Infarction. Bali Medical Journal. 2022;11(1): 418–424.
  44. Yosaputra C, Lefrandt RL, Panda AL, Pangemanan J. Correlation between Left Ventricular Ejection Fraction (LVEF) and six-month mortality risks after hospital discharge following myocardial infarction in patients with Non-ST-Elevation Myocardial Infarction (NSTEMI) at Prof. Dr. R. D. Kandou General Hospital. Bali Medical Journal. 2021;10(3):975–978.

How to Cite

Putra, M. A., Alwi, I., Soetisna, T. W., Gunanti, Sandora, N., Busro, P. W., Supomo, Fitria, N. A., & Kusuma, T. R. (2023). Remodeling in early myocardial infarction: alteration of extracellular matrix; Collagen-1, Collagen-3, α-SMA, and α-Actinin in Porcine heart model. Bali Medical Journal, 12(3), 2721–2728. https://doi.org/10.15562/bmj.v12i3.4664

HTML
0

Total
0

Share