Skip to main content Skip to main navigation menu Skip to site footer

Activity of enzyme Esterase, Glutathione S Transferase and Inorganic Substance of Dengue vector Aedes aegypti larvae against Lansium domesticum leave extract and fractionation


Backgound: Dengue vector control using chemical insecticides for a long time on the same target encourages the rapid development of a resistant dengue vector population of Aedes aegypti. Therefore, an alternative method is needed in the form of the use of plant-based insecticides, Lansium domesticum or duku has been proven to contain secondary metabolites that have the potential as insecticides. This study was conducted to measure the activity of enzyme esterase and glutathione S-transferase, as well as to observe the concentration of inorganic substances such as Fe, Mg, Na, and K in Ae. aegypti larvae exposed to L. domesticum extract using methanol as the solvent and fractionation using hexane, butanol, and ethyl acetate as the solvents.

Methods: This study used Ae. aegypti larvae and L. domesticum leaves extract and fraction. Esterase activity was measured using a spectrophotometer at λ = 490 nm and obtained as light absorption per minute per mg protein. GST activity was measured using a spectrophotometer at λ = 340 nm and expressed as light absorption per minute per mg protein. Inorganic substance level was evaluated by the absorbance of the atoms using an atomic absorption spectrophotometer which was analyzed at certain wavelengths of each atom according to Beer's law equation

Results: The results showed LD50 and LD90 of the crude extract of L. domesticum were 2200ppm and 3200ppm after 24 hours of observation. Crude extract and the fraction of L. domesticum leaf influenced the development of Ae. Aegypti. It reduced the activity of the esterase enzyme. Meanwhile, it increased the GST enzyme activity of Ae. aegypti larvae as well as affects the levels of inorganic substances in Ae. aegypti larvae.

Conclusion: Thus, L. domesticum as a plant-based insecticide is an alternative to control the vector whose target is more selective and safe.


  1. World Health Organization. Ending the burden of dengue infection: Indonesia launched the 2021-2025 National Strategic Plan for Dengue Control Programme. South East Asia Indonesia; 2021.
  2. Pinontoan OR, Sumampouw OJ, Ticoalu J, Nelwan JE, Musa EC, Sekeeon J. The variability of temperature, rainfall, humidity and prevalance of dengue fever in Manado City. Bali Med J. 2022;11(1):81–6. Available from:
  3. Nandita PN, Astuti NMW, Wirasuta IMAG, Sari PMNA. Kasus Kematian Akibat Dichlorvos dan Phenthoat. Indones J Leg Forensic Sci. 2019;9(1):51. Available from:
  4. Nara A, Yamada C, Kodama T, Saka K, Takagi T. Fatal Poisoning with Both Dichlorvos and Phenthoate,. J Forensic Sci. 2018;63(6):1928–31. Available from:
  5. Abdallah HM, Mohamed GA, Ibrahim SRM. Lansium domesticum-A Fruit with Multi-Benefits: Traditional Uses, Phytochemicals, Nutritional Value, and Bioactivities. Nutrients. 2022;14(7):1531. Available from:
  6. Nopitasari N. Uji Aktivitas Ekstrak N-heksana Biji Langsat (Lansium Domesticum Cor.) Sebagai Larvasida Aedes Aegypti. Tanjungpura University; 2014.
  7. Ni’mah T, Oktarina R, Mahdalena V, Asyati D. Potensi Ekstrak Biji Duku (Lansium domesticum Corr) terhadap Aedes aegypti. Bul Penelit Kesehat. 2015;43(2). Available from:
  8. Mirnawaty S, Jaya B. Uji Efektivitas Ekstrak Kulit Langsat (Lansium domesticum) sebagai Anti Nyamuk Elektrik terhadap Nyamuk Aedes aegypti (A Test on the Effectiveness of Lansium Peel Extract (Lansium Domesticum) as Mosquito Electric Repellent Against Aedes aegypti Mosquitoes. J Akad Kim. 2012;1(4).
  9. Saputra C. Efektifitas Kulit dan Biji Buah Duku (Lancium domesticum Corr.) sebagai Ovisida terhadap Nyamuk Aedes aegypti (Sebagai Sumber Belajar Biologi Submateri Pencemaran Lingkungan pada Peserta Didik SMA Kelas X Semester Ganjil). IAIN Raden Intan Lampung; 2017.
  10. Mayanti T. Kandungan kimia dan bioaktivitas tanaman duku. Bandung Univ Padjadjaran Press. 2009;119:17–24.
  11. Monzon RB, Alvior JP, Luczon LL, Morales AS, Mutuc FE. Larvicidal potential of five Philippine plants against Aedes aegypti (Linnaeus) and Culex quinquefasciatus (Say). Southeast Asian J Trop Med Public Health. 1994;25(4):755–9.
  12. Murti YB, Dwinatari IK. The Effect of Harvesting TIME and Degree of Leaves Maturation on Viteksikarpin Level in Legundi Leaves (Vitex Trifolia L.). Maj Obat Tradis. 2015;20(2):110–6.
  13. Turhan K, Pektaş B, Türkan F, Tuğcu FT, Turgut Z, Taslimi P, et al. Novel benzo[b]xanthene derivatives: Bismuth(III) triflate‐catalyzed one‐pot synthesis, characterization, and acetylcholinesterase, glutathione S‐transferase, and butyrylcholinesterase inhibitory properties. Arch Pharm (Weinheim). 2020;353(8):2000030. Available from:
  14. Türkan F, Huyut Z, Taslimi P, Huyut MT, Gülçin İ. Investigation of the effects of cephalosporin antibiotics on glutathione S-transferase activity in different tissues of rats in vivo conditions in order to drug development research. Drug Chem Toxicol. 2018;43(4):423–8. Available from:
  15. Pethuan S, Jirakanjanakit N, Saengtharatip S, Chareonviriyaphap T, Kaewpa D, Rongnoparut P. Biochemical studies of insecticide resistance in Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Thailand. Trop Biomed. 2007;24(1):7–15.
  16. Hemingway J, Hawkes NJ, McCarroll L, Ranson H. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol. 2004;34(7):653–65. Available from:
  17. Taslimi P, Gulçin İ. Antioxidant and anticholinergic properties of olivetol. J Food Biochem. 2018;42(3):e12516. Available from:
  18. Yu K-X, Wong C-L, Ahmad R, Jantan I. Larvicidal activity, inhibition effect on development, histopathological alteration and morphological aberration induced by seaweed extracts in Aedes aegypti (Diptera: Culicidae). Asian Pac J Trop Med. 2015;8(12):1006–12. Available from:
  19. Handa SS. An overview of extraction techniques for medicinal and aromatic plants. Extr Technol Med Aromat plants. 2008;1(1):21–40.
  20. Bibi Y, Nisa S, Chaudhary FM, Zia M. Antibacterial activity of some selected medicinal plants of Pakistan. BMC Complement Altern Med. 2011;11:52. Available from:
  21. Dono D, Ismayana S, Idar I, Prijono D, Muslikha I. Status dan Mekanisme Resistensi Biokimia Crocidolomia pavonana (F.) (Lepidoptera: Crambidae) terhadap Insektisida Organofosfat serta Kepekaannya terhadap Insektisida Botani Ekstrak Biji Barringtonia asiatica. J Entomol Indones. 2015;7(1):9. Available from:
  22. Fathurrahmi F. Analysis of Mineral Contents Ca, Mg, Fe And Na in Natural Bentonite Clay. J Nat. 2012;12(1).
  23. Organization WH. Guidelines for laboratory and field testing of mosquito larvicides. World Health Organization; 2005.
  24. Zettel C, Kaufman P. Yellow fever mosquito Aedes aegypti (Linnaeus) (Insecta: Diptera: Culicidae). EDIS. 2009;2009(2). Available from:
  25. Houghton PJ, Raman A. Laboratory Handbook for the Fractionation of Natural Extracts [Internet]. Springer US; 1998. Available from:
  26. Suryanto E, Wehantouw F. Aktivitas penangkap radikal bebas dari ekstrak fenolik daun sukun (Artocarpus altilis F.). Chem Prog. 2019;2(1):1–7.
  27. Fidiana DF, Mifbakhuddin M, Nurullita U. Daya Bunuh Ekstrak Kulit Duku (Lansium Domesticum Corr) terhadap Kematian Larva Aedes aegypti. J Kesehat Masy Indones. 2020;8(2):22–9.
  28. Setyorini D, Antarlina SS. Secondary metabolites in sorghum and its characteristics. Food Sci Technol. 2022;42. Available from:
  29. Hamshou M. Toxicity and mode of action of fungal lectins in pest insects important in agriculture. Ghent University; 2012.
  30. Elumalai K, Dhanasekaran S, Krishnappa K. Toxicity of saponin isolated from Gymnema sylvestre R. Br. (Asclepiadaceae) against Culex tritaeniorhynchus Giles (Diptera: Culicidae) Japanese encephalitis vector mosquito in India. Rev Inst Med Trop Sao Paulo. 2012;54(6):337–44. Available from:
  31. Saha D. Biochemical Insecticide Resistance in Tea Pests [Internet]. Insecticides Resistance. InTech; 2016. Available from:
  32. Das M, Dutta P. Status of insecticide resistance and detoxifying enzyme activity of Aedes albopictus population in Sonitpur district of Assam, India. Int J Mosq Res. 2014;1(4):35–41.
  33. Waterhouse DF. Functional Differentiation of the Hindgut Epithelium of the Blowfly Larva into Longitudinal Bands. Aust J Biol Sci. 1955;8(4):514. Available from:
  34. Carreño Otero AL, Vargas Méndez LY, Duque L. JE, Kouznetsov V V. Design, synthesis, acetylcholinesterase inhibition and larvicidal activity of girgensohnine analogs on Aedes aegypti, vector of dengue fever. Eur J Med Chem. 2014;78:392–400. Available from:
  35. KICENIUK J, PHILLIPS JE. Magnesium Regulation in Mosquito Larvae (Aedes Campestris) Living in Waters of High MgSO4 Content. J Exp Biol. 1974;61(3):749–60. Available from:

How to Cite

Putri, D. F., Husna, I., Kurniati, M., & Primadiamanti, A. . (2023). Activity of enzyme Esterase, Glutathione S Transferase and Inorganic Substance of Dengue vector Aedes aegypti larvae against Lansium domesticum leave extract and fractionation. Bali Medical Journal, 12(2), 1163–1170.




Search Panel

Devita Febriani Putri
Google Scholar
BMJ Journal

Ismail Husna
Google Scholar
BMJ Journal

Mala Kurniati
Google Scholar
BMJ Journal

Annisa Primadiamanti
Google Scholar
BMJ Journal