Skip to main content Skip to main navigation menu Skip to site footer

The effect of metformin on autophagy by LC3 expression in Type 2 Diabetes Mellitus (T2DM) human skeletal muscle cell culture

  • Jongky Hendro Prajitno ,
  • Agung Pranoto ,
  • Robert Dwitama Adiwinoto ,
  • Soebagijo Adi Soelistijo ,

Abstract

Background: Skeletal muscle is an essential tissue in glucose metabolism. Reduced autophagic capacity to remove damaged contractile proteins in skeletal muscle cells will contribute to the loss of muscle mass. Metformin is the first-line agent for treating type 2 diabetes mellitus (T2DM) patients. This study aims to investigate the effects of metformin on autophagy through LC3 expression in human skeletal muscle cell culture (SkMC).

Methods: The T2DM human SkMC was obtained from T2DM treatment naïve patients, purchased from AcceGen Biotech®. Fully differentiated myotubes were randomized into the control and treatment groups. The treatment group was given Metformin in three doses (1 mM, 2 mM, and 3 mM). An immunoblotting assay of AMPKα and LC3 was performed using electrochemiluminescence (ECL). The quantitative expression of AMPKα and LC3 were measured at baseline, after 24-hour, 48-hour, and 72-hour. Data were analyzed using SPSS version 22 for Windows.
Results: AMPKα and LC3 expression were higher in the treatment group compared to the control group. The levels of AMPKα and LC3 expression in the treatment group increased dose-dependent. Linear regression analysis demonstrated a significant correlation between metformin administration and LC3 expression levels (p<0.0001).

Conclusion: Metformin administration on T2DM human SkMC resulted in increased autophagic activity, marked by increased LC3 expression.

References

  1. Jaiswal N, Gavin MG, Quinn WJ 3rd, Luongo TS, Gelfer RG, Baur JA, et al. The role of skeletal muscle Akt in the regulation of muscle mass and glucose homeostasis. Mol Metab. 2019;28:1-13.
  2. Bawadi H, Alkhatib D, Abu-Hijleh H, Alalwani J, Majed L, Shi Z. Muscle Strength and Glycaemic Control among Patients with Type 2 Diabetes. Nutrients. 2020;12(3):771.
  3. Evans PL, McMillin SL, Weyrauch LA, Witczak CA. Regulation of Skeletal Muscle Glucose Transport and Glucose Metabolism by Exercise Training. Nutrients. 2019;11(10):2432.
  4. Sinacore DR, Gulve EA. The role of skeletal muscle in glucose transport, glucose homeostasis, and insulin resistance: implications for physical therapy. Phys Ther. 1993;73(12):878-891.
  5. Park SW, Goodpaster BH, Lee JS, Kuller LH, Boudreau R, de Rekeneire N, et al. Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care. 2009 Nov;32(11):1993-7.
  6. Abidin Öztürk ZA, Türkbeyler İH, Demir Z, Bilici M, Kepekçi Y. The effect of blood glucose regulation on sarcopenia parameters in obese and diabetic patients. Turk J Phys Med Rehabil. 2017;64(1):72-79.
  7. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728-741.
  8. Jiao J, Demontis F. Skeletal muscle autophagy and its role in sarcopenia and organismal aging. Curr Opin Pharmacol. 2017;34:1-6.
  9. Prentki M, Nolan CJ. Islet beta cell failure in type 2 diabetes. J Clin Invest. 2006;116(7):1802-1812.
  10. Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383(9922):1068-1083.
  11. Dudani S, Poodury S, Mangalesh S. Study of neutrophil-lymphocyte ratio (NLR) in recent onset type 2 diabetes mellitus. Bali Medical Journal. 2021;10(1):11-16.
  12. Henriksen TI, Wigge LV, Nielsen J, Pedersen BK, Sandri M, Scheele C. Dysregulated autophagy in muscle precursor cells from humans with type 2 diabetes. Sci Rep. 2019;9(1):8169.
  13. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, et al. TFEB links autophagy to lysosomal biogenesis. Science. 2011;332(6036):1429-33.
  14. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108(8):1167-74.
  15. Yuan H, Hu Y, Zhu Y, Zhang Y, Luo C, Li Z, et al. Metformin ameliorates high uric acid-induced insulin resistance in skeletal muscle cells. Mol Cell Endocrinol. 2017;443:138-145.
  16. Hasan MM, Shalaby SM, El-Gendy J, Abdelghany EMA. Beneficial effects of metformin on muscle atrophy induced by obesity in rats. J Cell Biochem. 2019;120(4):5677-5686.
  17. Diniz Vilela D, Gomes Peixoto L, Teixeira RR, Belele Baptista N, Carvalho Caixeta D, Vieira de Souza A, et al. The Role of Metformin in Controlling Oxidative Stress in Muscle of Diabetic Rats. Oxid Med Cell Longev. 2016;2016:6978625.
  18. Wessels B, Ciapaite J, van den Broek NM, Nicolay K, Prompers JJ. Metformin impairs mitochondrial function in skeletal muscle of both lean and diabetic rats in a dose-dependent manner. PLoS One. 2014;9(6):e100525.
  19. Mulyani WRW, Sanjiwani MID, Sandra, Prabawa IPY, Lestari AAW, Wihandani DM, et al. Chaperone-Based Therapeutic Target Innovation: Heat Shock Protein 70 (HSP70) for Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes. 2020;13:559-568.
  20. Walton RG, Dungan CM, Long DE, Tuggle SC, Kosmac K, Peck BD, et al. Metformin blunts muscle hypertrophy in response to progressive resistance exercise training in older adults: A randomized, double-blind, placebo-controlled, multicenter trial: The MASTERS trial. Aging Cell. 2019;18(6):e13039.
  21. Fritzen AM, Madsen AB, Kleinert M, Treebak JT, Lundsgaard AM, Jensen TE, et al. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation. J Physiol. 2016 Feb 1;594(3):745-61.
  22. Li DJ, Huang F, Lu WJ, Jiang GJ, Deng YP, Shen FM. Metformin promotes irisin release from murine skeletal muscle independently of AMP-activated protein kinase activation. Acta Physiol (Oxf). 2015;213(3):711-721.
  23. Jadhav KS, Dungan CM, Williamson DL. Metformin limits ceramide-induced senescence in C2C12 myoblasts. Mech Ageing Dev. 2013;134(11-12):548-559.
  24. Brown AE, Dibnah B, Fisher E, Newton JL, Walker M. Pharmacological activation of AMPK and glucose uptake in cultured human skeletal muscle cells from patients with ME/CFS. Biosci Rep. 2018;38(3):BSR20180242.
  25. Sanchez AM, Csibi A, Raibon A, Cornille K, Gay S, Bernardi H, et al. AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1. J Cell Biochem. 2012;113(2):695-710.
  26. Clavel S, Siffroi-Fernandez S, Coldefy AS, Boulukos K, Pisani DF, Dérijard B. Regulation of the intracellular localization of Foxo3a by stress-activated protein kinase signaling pathways in skeletal muscle cells. Mol Cell Biol. 2010;30(2):470-480.
  27. Thomson DM. The Role of AMPK in the Regulation of Skeletal Muscle Size, Hypertrophy, and Regeneration. Int J Mol Sci. 2018;19(10):3125.
  28. Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy. 2007;3(6):542-545.
  29. Xia Q, Huang X, Huang J, Zheng Y, March ME, Li J, et al. The Role of Autophagy in Skeletal Muscle Diseases. Front Physiol. 2021;12:638983.
  30. Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. AMPK activation: a therapeutic target for type 2 diabetes?. Diabetes Metab Syndr Obes. 2014;7:241-253.
  31. Sebastián D, Zorzano A. Self-Eating for Muscle Fitness: Autophagy in the Control of Energy Metabolism. Dev Cell. 2020;54(2):268-281.
  32. Kanamori H, Naruse G, Yoshida A, Minatoguchi S, Watanabe T, Kawaguchi T, et al. Metformin Enhances Autophagy and Provides Cardioprotection in δ-Sarcoglycan Deficiency-Induced Dilated Cardiomyopathy. Circ Heart Fail. 2019;12(4):e005418.
  33. Nwadike C, Williamson LE, Gallagher LE, Guan JL, Chan EYW. AMPK Inhibits ULK1-Dependent Autophagosome Formation and Lysosomal Acidification via Distinct Mechanisms. Mol Cell Biol. 2018;38(10):e00023-18.
  34. Milan G, Romanello V, Pescatore F, Armani A, Paik JH, Frasson L, et al. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun. 2015;6:6670.
  35. Hawley SA, Gadalla AE, Olsen GS, Hardie DG. The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes. 2002;51(8):2420-2425.
  36. Musi N, Hirshman MF, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O, et al. Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes. 2002;51(7):2074-81.
  37. Suwa M, Egashira T, Nakano H, Sasaki H, Kumagai S. Metformin increases the PGC-1alpha protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo. J Appl Physiol (1985). 2006;101(6):1685-1692.
  38. Kristensen JM, Treebak JT, Schjerling P, Goodyear L, Wojtaszewski JF. Two weeks of metformin treatment induces AMPK-dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle. Am J Physiol Endocrinol Metab. 2014;306(10):E1099-E1109.
  39. Langone F, Cannata S, Fuoco C, Lettieri Barbato D, Testa S, Nardozza AP, et al. Metformin protects skeletal muscle from cardiotoxin induced degeneration. PLoS One. 2014;9(12):e114018.
  40. Queiroz EA, Puukila S, Eichler R, Sampaio SC, Forsyth HL, Lees SJ, et al. Metformin induces apoptosis and cell cycle arrest mediated by oxidative stress, AMPK and FOXO3a in MCF-7 breast cancer cells. PLoS One. 2014;9(5):e98207.
  41. Corona Velazquez AF, Jackson WT. So Many Roads: the Multifaceted Regulation of Autophagy Induction. Mol Cell Biol. 2018;38(21):e00303-18.
  42. Grotemeier A, Alers S, Pfisterer SG, Paasch F, Daubrawa M, Dieterle A, et al. AMPK-independent induction of autophagy by cytosolic Ca2+ increase. Cell Signal. 2010;22(6):914-25.
  43. Tomic T, Botton T, Cerezo M, Robert G, Luciano F, Puissant A, et al. Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell Death Dis. 2011;2(9):e199.

How to Cite

Prajitno, J. H., Pranoto, A., Adiwinoto, R. D., & Soelistijo, S. A. (2022). The effect of metformin on autophagy by LC3 expression in Type 2 Diabetes Mellitus (T2DM) human skeletal muscle cell culture. Bali Medical Journal, 11(1), 349–355. https://doi.org/10.15562/bmj.v11i1.3203

HTML
0

Total
0

Share

Search Panel

Jongky Hendro Prajitno
Google Scholar
Pubmed
BMJ Journal


Agung Pranoto
Google Scholar
Pubmed
BMJ Journal


Robert Dwitama Adiwinoto
Google Scholar
Pubmed
BMJ Journal


Soebagijo Adi Soelistijo
Google Scholar
Pubmed
BMJ Journal